DIFFERENTIAL CALCULAS AND DIFFERENTIAL EQUATION - 2017 | B.SC CS 1ST YEAR | MJPRU | EXAM PAPER | My CS Tutorial - My CS Tutorial

Breaking

Programming languages full tutorial and programs, exam papers, visual basic( Vb.net ), information of new technologies and more....

Saturday, August 1, 2020

DIFFERENTIAL CALCULAS AND DIFFERENTIAL EQUATION - 2017 | B.SC CS 1ST YEAR | MJPRU | EXAM PAPER | My CS Tutorial


Differential calculas and Differential equation | My CS Tutorial

Paper Code: 13502
1502
B.Sc. (Computer Science) (Part 1)
Examination, 2017
Paper No. 1.2
DIFFERENTIAL CALCULUS AND DIFFERENTIAL EQUATION

Time: Three Hours][Maximum Marks: 50

NoteAttempt five questions in all selecting one question from each Section. All questions carry equal marks.
Section-A
1. (a) Find nth differential coefiicient of \tan^{-1}\frac{x}{a}.
    (b) If y=(x^{2}-1)^{n} and P_{n}(x)=\frac{d^{n}}{dx^{n}}(x^{2}-1)^{n}, show that :
\frac{d}{dx}\left \{ (1-x^{2})\frac{dP_{n}(x)}{dx} \right \}+n(n+1)P_{n}(x)=0
2. (a) If e^{x^{y}} = a_{0} + a_{1}x + a_{2}x^{2} +.....+ a_{n}x^{n} +....., prove that :
a_{n+1} = \frac{1}{n+1}\left \{ a_{n}+\frac{a_{n-1}}{1!} + \frac{a_{n-2}}{2!} +.....+ \frac{a_{0}}{n!} \right \}
    (b) State and prove Taylor’s theorem.
3. (a) Evaluate :
\lim_{x\rightarrow 0}\frac{x^{1/2}\tan x}{(e^{x}-1)^{3/2}}
    (b) Show that the Pedal equation of the ellipse \frac{x^2}{a^{2}}+\frac{y^2}{b^{2}}=1 is:
\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{*r^{2}}{a^{2}b^{2}}
4. (a) Show that the locus of the extremily of the polar subnormal of the curve r=f(\theta ) is r=f'\left ( \theta - \frac{\pi}{2} \right ).
    (b) Find the polar sub-tangent of the ellipse :
\frac{1}{r} = 1 + e\cos \theta
Section-B
5. (a) Solve the following :
\frac{dy}{dx} = e^{x-y} + x^{2}e^{-y}
    (b) Solve the following :
\frac{dy}{dx} = \frac{x-y+3}{2x-2y-5}
6. (a) Solve the following :
\frac{dy}{dx}+(2x + \tan^{-1}y-x^{3})(1+y^{2})=0
    (b) Solve the following :
\frac{d^{4}y}{dx^{4}}+m^{2}y=0
7. (a) Solve the following :
(D^2-4D+4)y=8x^2 e^2x \sin 2x
    (b) Solve the following :
x^{2}\frac{d^{2}y}{dx^{2}}+4x\frac{dy}{dx}+2y=e^{x}
Section-C
8. (a) Solve:
(3x+2)^{2}\frac{d^{2}y}{dx^{2}}+3(3x+2)\frac{dy}{dx}-36y=3x^{2}+4x+1
    (b) Evaluate the following :
\int (3x^{2}+4x+5)^5(3x+2)dx
9. (a) Evaluate the following :
\int_{1}^{2}\frac{x^{3}}{(x+1)(x^{2}-7x+12)}dx
      (b) Evaluate \int_{a}^{b}\sin x dx as the limit of a sum.
10. (a) Find the indefinite integral :
\int \left \{ \sin^{2} x + \cos^{2}x + \frac{x^{3}+2x}{x^{1/2}}\right \}dx
      (b) Evaluate the following :
\int_{0}^{\pi/4} \sec x \sqrt{\frac{1-\sin x}{1+\sin x}}dx

_______________________________________


Please share this post and blog link with your friends.For more programs use this blog.

If you have any problem, please comment in comment box, subscribe this blog for notifications of new post on your email and follow this blog.If you have any method of this tutorial or program or want to give any suggestion send email on hc78326@gmail.com

Created by-- HARSH CHAUHAN

No comments:

Post a Comment