NUMERICAL ANALYSIS - 2018 | B.SC CS 2ND YEAR | MJPRU | EXAM PAPER | My CS Tutorial - My CS Tutorial

Breaking

Programming languages full tutorial and programs, exam papers, visual basic( Vb.net ), information of new technologies and more....

Saturday, August 1, 2020

NUMERICAL ANALYSIS - 2018 | B.SC CS 2ND YEAR | MJPRU | EXAM PAPER | My CS Tutorial



Numerical analysis | My CS Tutorial

Paper code: 13512
1512
B.Sc. (Computer Science) (Part 2)
Examination, 2018
Paper No. 1.3
NUMERICAL ANALYSIS

Time: Three Hours]
[Maximum Marks: 50

Note: Attempt five questions. All questions carry equal marks. Symbols are as usual. Use of calculator is allowed.
1. (a) Evaluate :
 \Delta ^{2} \cos 2x
     (b) If :
u_{0} + u_{8} = 1.9243
u_{1} + u_{7} = 1.9590
u_{2} + u_{6} = 1.9823
u_{3} + u_{5} = 1.9956
find u_{4}.
2. (a) Given :
\sum_{1}^{10}u_{x}=500426 \sum_{4}^{10}u_{x}=329240 \sum_{7}^{10}u_{x}=175212
and u_{10}=40365. Find u_{1}.
      (b) Find y, when x = 8 for :
x0510152025
y71114182432
3. (a) If f(x) = \frac{1}{x^{2}}, find the divided differences f(a,b)f(a,b,c) and f(a,b,c,d).
    (b) Given lof 654 = 2.8156, log 658 = 2.8182, log 659 = 2.8189 and log 661 = 2.8202. Find log 656.
4. Solve the following system by iteration method :
27x + 6y - z = 85
6x+15y+2z=72
x+y+54z=110
5. Solve the system :
 5x-2y+z=4
 7x+y-5z=8
 3x+7y+4z=10
by :
(i) Gauss’s elemination method
(ii) Gauss’s Jordan method
6. (a) Evaluate :
\int_{0}^{6}\frac{1}{1+x^{2}}dx
by using Simpson’s 3/8 rule.
    (b) If U_{x}=a+bx+cx^{2}, prove that:
\int_{1}^{3}U_{x}dx = 2U_{2}+\frac{1}{12}(U_{0}-2U_{2}+U_{4})
and hence find :
\int_{-1/2}^{1/2} e^{-\frac{x^{2}}{10}}dx
7. (a) Evaluate :
\int_{0.2}^{1.4}(\sin x - \log_{e}x + e^{x})dx
by Weddle’s rule.
    (b) Using Euler’s modification method to compute y for x = 0.05. Given that :
\frac{dy}{dx}=x+y
with the initial condition x= 0 and y= 1.
8. Solve initial value problem :
\frac{dy}{dx} = 1 + xy^{2}y(0)=1
for x = 0.4, 0.5 by using Milne’s method when it is given :
x0.10.20.3
y1.1051.2231.355
9. Solve :
{y}'' = (x^{2} + y^{2})(1+y^{2})
for x = 0.5 and x = 1.0 by using Runge-Kutta method, with x =0, y = 1, y’ = 0.
10. (a) Find \sqrt{12} to five places of decimal by Newton’s-Raphson method.
       (b) Compute the real root of x \log_{10} x -1.2 = 0 correct to five decimal places by Regula-Falsi method.

_______________________________________


Please share this post and blog link with your friends.For more programs use this blog.

If you have any problem, please comment in comment box, subscribe this blog for notifications of new post on your email and follow this blog.If you have any method of this tutorial or program or want to give any suggestion send email on hc78326@gmail.com

Created by-- HARSH CHAUHAN

No comments:

Post a Comment