DIFFERENTIAL CALCULUS AND DIFFERENTIAL EQUATION - 2018 | B.SC CS 1ST YEAR | MJPRU | EXAM PAPER | My CS Tutorial - My CS Tutorial

Breaking

Programming languages full tutorial and programs, exam papers, visual basic( Vb.net ), information of new technologies and more....

Saturday, August 1, 2020

DIFFERENTIAL CALCULUS AND DIFFERENTIAL EQUATION - 2018 | B.SC CS 1ST YEAR | MJPRU | EXAM PAPER | My CS Tutorial


Differential calculas and Differential equation | My CS Tutorial


Paper Code: 13502
1502
B.Sc. (Computer Science) (Part 1)
Examination, 2018
Paper No. 1.2
DIFFERENTIAL CALCULUS AND DIFFERENTIAL EQUATION

Time: Three Hours][Maximum Marks: 50

NoteAttempt five questions in all selecting one question from each Section. All questions carry equal marks.
Section-A
1. (a) Find nth differential coefficient of :
\sin^{5}x \cos^{3}x
    (b) If y=e^{a \sin^{-1} x}, find the values of (y_{n})_{0}.

2. (a) Expand 2x^{3}+7x^{2}+x-1 in power of (x-2).
    (b) State and prove Maclaurin’s theorem.
3. (a) Evaluate :
\lim_{x\rightarrow 0}\left ( \frac{\tan x}{x} \right )^{1/x^{2}}
    (b) Find the angle between the radius vector and tangent for the curve :
r=a(1+\cos \Theta) at point (r, \Theta)
4. (a) Find the length of polar subtangent of the parabola :
\frac{2a}{r} = 1 + \cos \Theta
(b) Evaluate :
\lim_{x\rightarrow 0}\frac{(1+x)^{1/x}-e}{x}
Section-B
5. (a) Evaluate :
\int_{0}^{\pi/2} \log\sin x dx
    (b) Evaluate \int_{a}^{b} x^{2} dx by summation.
6. (a) Evaluate :
\int \frac{2x^{2}+3x+4}{x^{2}+6x+10}dx
    (b) Evaluate :
\int \frac{1-4x-2x^{2}}{\sqrt{2x-x^{2}}}dx
7. (a) Solve :
\frac{dy}{dx} = e^{x-y} + x^{2} e^{-y}
    (b) Solve the following :
\frac{dy}{dx} + (2x\tan^{-1}y - x^{3})(1+y^{2})=0
Section-C
8. (a) Solve:
(3x+2)^{2}\frac{d^{2}y}{dx^{2}}+3(3x+2)\frac{dy}{dx}-36y=3x^{2}+4x+1
    (b) Evaluate the following :
\frac{d^{4}y}{dx^{4}}+\frac{d^{2}}{dx^{2}}+y = ax^{2} + be^{-x} \sin 2x
9. (a) Solve :
\frac{d^{2}y}{dx^{2}}+a^{2}y=\tan ax
      (b) Solve :
x^{2} \frac{d^{2}y}{dx^{2}}-3x\frac{dy}{dx}+y= \frac{\log x \sin (\log x)+1}{x}
10. (a) Solve :
\frac{dx}{dt} + wy =0
\frac{dy}{dt} - wx =0
      (b) Solve :

                                  \frac{d^{2}y}{dx^{2}}+a^{2}y=\cos ax


_______________________________________


Please share this post and blog link with your friends.For more programs use this blog.

If you have any problem, please comment in comment box, subscribe this blog for notifications of new post on your email and follow this blog.If you have any method of this tutorial or program or want to give any suggestion send email on hc78326@gmail.com

Created by-- HARSH CHAUHAN

No comments:

Post a Comment